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Voltage-activated ion channels vary randomly between open and closed states, influenced by the membrane
potential and other factors. Signal transduction is enhanced by noise in a simple ion channel model. The
enhancement occurs in a finite range of signals; the range can be extended using populations of channels. The
range increases more rapidly in multiple-threshold channel populations than in single-threshold populations.
The diversity of ion channels may thus be present as a strategy to reduce the metabolic costs of handling a
broad class of electrochemical signals.
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Voltage-activated ion channels are essential elements in
biological signal transduction, playing important roles in
synaptic transmission, generation of neural action potentials,
regulation of membrane potentials and intracellular Ca2+

concentrations, and other cellular functions �1–4�. The gating
dynamics of the channels allow the nonconductive cell mem-
brane to take part in electrical conduction and signaling.
Channels vary between a conducting or open state and a
nonconducting or closed state, with intermediary states in the
transition being unstable and short-lived. The transition be-
tween open and closed states is influenced by a broad assort-
ment of factors, principally the membrane potential, but also
including hormones, toxins, protein kinases and phos-
phatases, and thermal fluctuations. Voltage-activated chan-
nels are functionally diverse in their sensitivity to depolar-
ization; indeed, Lee et al. �5� identify no fewer than five
distinct activation thresholds for Ca2+ channels.

Channel gating dynamics are intrinsic stochastic transi-
tions that depend strongly on external factors, so that the
channel constitutes a single-molecule sensor or communica-
tion channel, transforming membrane potentials into noisy
ionic currents. Noise can have surprising effects in many
nonlinear systems. Perhaps the best known of these is sto-
chastic resonance �SR�, wherein the presence of noise en-
hances the response of a thresholding system to a weak pe-
riodic signal �for a review, see Ref. �6��. SR has been
experimentally demonstrated in a system of parallel ion
channels �7�, and studied theoretically in numerous systems
�see, e.g., Refs. �8–14��. In this work, we use a simple ion
channel model to further investigate the stochastic nature of
voltage-activated ion channels, characterizing the limits that
noise imposes on information transduction in individual
channels and systems of channels.

We make use of a discrete model in which the channel
switches between distinct open and closed states, omitting
the dynamics of the transition process. Such a discrete model

captures the bistable nature of the channel dynamics. By
omitting the transition dynamics, we assume that any stimu-
lus to the channel varies slowly compared to the time scale
of channel opening and closing. We can extend this assump-
tion to a quasistatic approximation, where the channel is al-
ways in equilibrium, and describe the channel opening prob-
ability by using the steady state �time t→�� probability for
the permissive state �15�, also called the activation function
of the channel. This probability is given by

P� =
1

1 + e−zF�V−V0�/RT , �1�

where z is the �dimensionless� valence of the “gating par-
ticles,” F is Faraday’s constant, V is the transmembrane po-
tential, R is the ideal gas constant, and T is the temperature.
The parameter V0 is a bias �or noisy threshold� in the poten-
tial to which the channel tends to open. Gailey et al. �10�
have investigated noise in model ion channels essentially
identical to the ones defined by Eq. �1�, demonstrating that
stochastic resonance occurs.

For notational clarity, we lump several of the parameters
into a thermal noise parameter �, such that

� =
RT

zF
. �2�

The definition in Eq. �2� amounts to changing the units of
measure for the temperature to volts. At room temperature
and with z=1, � is approximately 25 mV.

Using Eq. �2�, the channel opening probability becomes

p�V;�� =
1

1 + e−�V−V0�/� , �3�

with a corresponding probability of remaining closed of
q�V ;��=1− p�V ;��. For single channels, or populations of
channels with homogeneous behavior, we can take V0=0
without loss of generality; the behavior for other values of V0
can be recovered by translating the potential in Eq. �3� by the
desired value for the threshold potential. In heterogeneous
populations of channels, the differing values of the threshold
potentials can have a profound effect on the behavior of the
system of channels, as we will demonstrate below.
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For a system of N channels, each of which are exposed to
the same transmembrane potential V but with different real-
izations of the noise �i.e., we have independent, identically
distributed noise�, we let ZN be the number of channels that
open during the time interval. The expected state of the
membrane, i.e., ZN, can be calculated in a straightforward
fashion. The expectation value �ZN��V ;�� and variance
�ZN

2 �V ;�� can be expressed using p�V ;��, q�V ;��, and N,
giving

�ZN��V;�� = Np�V;�� , �4�

�ZN

2 �V;�� = Np�V;��q�V;�� . �5�

In calculating Eqs. �4� and �5�, we have made use of the
independence of the noise for the channels.

We will focus on the behavior of ion channels near the
threshold value. To explore the ability of the ion channels to
serve as a transducer of electrical signals, we reproduce the
input potential by decoding the state of the membrane �i.e.,
the numbers of open and closed channels�. Near the thresh-
old, this gives rise to linear decoding rules. The basic ap-
proach is similar to the “reverse reconstruction” using linear
filtering that has been applied with great effect to the analysis
of a number of biological systems �see, e.g., Refs. �16–20��.
Despite the quite different nature of the signals we consider,
our static population analysis �below� shares the key features
of the temporal analyses in the cited works. Specifically, by
comparing the actual input to an estimate derived from the
systemic response, we can work at greater remove from the
details of the systems. We thus bypass the need for complete
descriptions of the transmission process and of the manner in
which the system response is used. This permits general lim-
its to be established on the signal-transducing ability of a
population of channels, regardless of what the actual mecha-
nisms may be.

We expand the expected number of open channels
�ZN��V ;�� to first order near the threshold �i.e., V→0�, giv-
ing

�ZN��V;�� =
N

2
+

N

4�
V + O�V2� . �6�

An example of the linear approximation is shown in Fig. 1.
Dropping the higher order terms and inverting Eq. �6�

suggests a linear decoding rule of the form

V̂N = 4��ZN

N
−

1

2
� , �7�

where V̂N is the estimate of the input potential. Combining
Eqs. �4� and �7�, we can show that

�V̂N��V;�� = 4��p�V;�� −
1

2
� . �8�

The expected value of V̂N is thus seen to be independent of
N; for notational simplicity, we drop the subscript and write

�V̂�. Note that, as the thermal noise increases, the expected

value of the decoded potential closely matches the input po-
tential over a broader range.

We must also consider the uncertainty of the potential
value decoded from the state of the membrane. This leads to

a total decoding error �V̂N with the form

�V̂N
2 �V;�� = Š�V̂N − V�2

‹ = �2�V;�� + �
V̂N

2 �V;�� , �9�

where

��V;�� = �V̂��V;�� − V , �10�

�
V̂N

2 �V;�� = Š�V̂N − ŠV̂��V;���2� =
16�2

N
p�V;��q�V;�� .

�11�

Using Eq. �3�, we can derive several properties that are
useful for understanding the role of noise in the channel be-
havior. In particular, it is straightforward to show that

�V̂��V ;��=V�V̂�(1; �� /V�), ��V ;��=V�(1; �� /V�), and

�
V̂N

2 �V ;��=V2�
V̂N

2 �1;� /V�, for all V�0. Thus the noise de-

pendence for both the reconstructed stimulus and its uncer-
tainty can be understood with a single stimulus. The total

error �V̂N
2 (1; �� /V�) is minimized for a nonzero value of the

noise parameter �, analogous to the stochastic resonance ef-
fect; see Fig. 2.

In Fig. 3, we show how �V̂N
2 varies with the number of

channels N. As N increases, the error curve flattens out into a
broad range of similar values. Thus the presence of noise
enhances signal transduction without requiring a precise re-
lation between V and �. This effect is analogous to the “sto-
chastic resonance without tuning” first reported by Collins et
al. �21� and previously explored in two-state systems not
dissimilar to the one investigated here �see, e.g., Ref. �22��.

Informally stated, SR without tuning allows for a wider
range of potentials to be accurately decoded from the chan-
nel states for any particular value of �. To make this notion
of “wider range” precise, we again focus our attention on the
expected behavior of the channels �see Fig. 1�. The expected

FIG. 1. First order approximation of the expectation value for
the channel opening. Near the threshold potential �V0=0� of the
channel, the expectation is nearly linear. Further from the threshold,
the expectation value saturates at either 0 or 1, where the linear
approximation diverges from the true value. The values shown here
are based on thermal noise �=1, giving a response width W=2.
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channel response �Z� matches well with the linear approxi-
mation when 	V	��. From this, the width W can be defined
to be 2�. Other definitions for the response width are, of
course, possible, but we still should observe that the width is
proportional to �, since the probability for channel opening
depends only on the ratio of V and � �Eq. �3��. The same
width is found for multiple identical channels, because the
total expected current is proportional to the single channel
behavior, without broadening the curve in Fig. 1.

The response width can thus be increased by increasing
the thermal noise parameter �. As seen in Figs. 2 and 3, such
an increase ultimately leads to a growth in the decoding error

�V̂N
2 . As � becomes large, �V̂N

2 is dominated by �
V̂N

2
and we

have the asymptotic behavior

�V̂N
2 �V;�� = O��2

N
� , �12�

based on Eq. �11�. The growth in �V̂N
2 with increasing � thus

can be overcome by further increasing the number of chan-
nels in the population. Therefore the response width W is
effectively constrained by the number of channels N, with
W=O�
N� for large N.

An arbitrary response width can be produced by assem-
bling enough channels. However, this approach is inefficient,
and greater width increases can be achieved with the same
number of channels. Consider instead dividing up the total
width into M subranges. These subranges can each be cov-
ered by a subpopulation of N channels, with the subpopula-
tions having different thresholds from one another. The width
of each subrange is O�
N�, but the total width is O�M
N�.
Thus the total response width can increase more rapidly as
additional types of channels are added. Conceptually, mul-
tiple types of channels arise naturally as a way to provide a
wide range of accurate responses, with multiple channels in
each type providing independence from any need to “tune”
the thermal noise to a particular level.

To describe the behavior of channels with different
thresholds, much of the preceding analysis can be directly
applied by translating the functions along the potential axis
to obtain the desired threshold. However, system behavior

was previously explored near the threshold value, but hetero-
geneous populations of channels have multiple thresholds.
Nonetheless, we can produce a comparable system by simply
assessing system behavior near the center of the total re-
sponse width.

To enable a clean comparison, we set the thresholds in the
heterogeneous populations so that a linear decoding rule can
be produced. A simple approach that achieves this is to space
the thresholds of the subpopulations by 2W=4�, with all
channels being otherwise equal. The subpopulations with
lower thresholds provide an upward shift in the expected
number of open channels for higher threshold subpopula-
tions, such that the different subpopulations are all approxi-
mated to first order by the same line. Thus the expected total
number of open channels leads to a linear decoding rule by
expanding to first order and inverting, as was done earlier for
homogeneous populations. Note that this construction re-
quires no additional assumptions about how the channel
states are to be interpreted.

To illustrate the effect of multiple types of channels, we
begin with a homogeneous baseline population M =1 of N
=1000 channels with V0=0 and apply a potential V with
thermal noise �=1. Using the definition above, the response
width is W=4. We then consider two cases, homogeneous
and heterogeneous, in each of which we increase the re-
sponse width by doubling the number of channels while
maintaining similar error expectations for the decoded cur-
rents.

In the homogeneous case, we have a single population
�M =1� with N=2000 channels. Doubling the number of
channels allows us to increase the temperature parameter �
by a factor of 
2 with similar expected errors outside the
response width. Thus we observe an extended range, relative
to the baseline case, in which we can reconstruct the stimulus
potential from the state of the channels �Fig. 4�.

In the heterogeneous case, we instead construct two sub-
populations �M =2� with N=1000 channels. We leave the
thermal noise parameter unchanged at �=1. One of the sub-
populations is modified so that the channel thresholds lie at
+W=2, while the other is modified so that the channel
thresholds lie at −W=−2. The resulting system of channels
has a broad range in which we can reconstruct the stimulus
potential with low error, markedly superior to the baseline

FIG. 2. Comparison of decoding error sources. The values
shown here are calculated for a single channel. The minimum in

�V̂2 occurs for nonzero thermal noise, analogous to stochastic
resonance.

FIG. 3. Effect of the number of channels on the decoding error.
As N becomes large, the error curve flattens out, indicating a broad
range of noise values that all give similar accuracy in the decoding
process.
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and homogeneous cases �Fig. 4�. The approach used in this
example can be directly extended to three or more subpopu-
lations.

The foregoing analysis and example suggest that the di-
versity of channel types found in a living cell are present as
an information processing strategy, providing a means to ef-
ficiently handle a broad class of electrochemical signals. The
superior scaling properties of heterogeneous populations of
channels can have a profound impact on the cellular metabo-
lism; large numbers of channels imply a large energetic in-
vestment, both in terms of the proteins needed to construct
the channels and of the increased demand on ion pumps that
accompanies the greater ionic currents �3�. The action poten-
tials generated in neurons can require a significant energetic
cost �23�, making the tradeoff between reliably coding infor-
mation and the metabolic costs potentially quite important.

In this picture, we expect that different types of cells will

require different numbers of functionally different ion chan-
nels. Cells that perform sophisticated signaling and respond
to a broad variety of signals will need a large number of
functionally different ion channels, while cells that are more
specialized to a narrower class of signals are likely to have a
smaller number of functional types. This appears to be gen-
erally consistent with the comparatively large variety of ion
channels found in excitable cells such as neurons �4�.

It is interesting to reconsider the work of Lee et al. �5� in
light of the analysis presented here. In their work, five Ca2+

channels with distinct thresholds are tabulated, including
three T-type channels interpreted as being important for the
electrical responsiveness of neurons. However, a full under-
standing of the physiological roles of the channels remains to
be found. The present analysis indicates that signal transduc-
tion by any given type of channel is intrinsically limited,
regardless of the details of how the state of the channels is
used. The multiple types of channels with their various
thresholds provide a metabolically and evolutionarily favor-
able means to overcome those limits.

Although we have used a specific model consisting of
channels with thermal fluctuations modulating an input po-
tential, we expect that the key result is more widely appli-
cable. The demonstration of the advantage of multiple chan-
nel types largely follows from two factors that are not
specific to the model channels. First, the distance of the input
potential from the threshold is proportional to the level of the
thermal noise, and, second, the total variance of the inputs to
the channels is proportional to the number of channels. Ulti-
mately, a multiplicity of functional types of channels with
varying thresholds arises because the independently distrib-
uted noise provides a natural scale for the system.
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